Discharge sites
Though Project STREAM was designed as a planning tool for management of Non-point Source pollutants of agricultural derivation, also included as an ancillary resource are permitted point source effluent sites. The National Permitted Discharge Elimination System (NPDES) database is a repository of information on the location and type of federally permitted waste discharge sites that release effluent into waterways. The US Environmental Protection Service, in coordination with state environmental quality agencies, maintains this database. For further information on NPDES program resources, see http://cfpub.epa.gov/npdes.
Summary
Finally, the suite of tools compiled and developed for the DSS were packaged in an Internet Map Server (IMS) site to ensure transferability of the system via the internet to the regional water quality community. A more traditional project delivery strategy, such as a stand-alone application or a set of GIS data layers, severely limits the pool of potential users to those with GIS capacities. By web-enabling the DSS in a user-friendly IMS system such as STREAM, all users with internet access will have much of the analytical power of a GIS without having to acquire GIS training. Designing a landscape that allows large-scale restoration efforts to occur in areas that maximize ecological benefits is vital to the conservation partnerships that operate in the LMAV. It is toward this end that DU developed these datasets and decision support system. Project STREAM provides an invaluable and unique toolset for assessing need and site potential for water quality enhancement work and will strengthen the conservation community's efforts in this ecologically sensitive region. Placing these powerful geographic analysis tools in the hands of regional water quality professionals will facilitate large-scale evaluation of factors impacting water quality and allow agencies to better maximize water quality benefits for each dollar invested in non-point source treatment programs and other conservation efforts.
References
Carpenter, D. J. and S. M. Carpenter (1983). "Modeling Inland Water Quality Using Landsat Data," Remote Sensing of Environment 13: 345-352.
Kleiss, B.A.(1996). "Sediment Retention in a Bottomland Hardwood Wetland in Eastern Arkansas," Wetlands 16, n3: 321-333.
Maul, J.D. and C.M. Cooper (2000). "Water Quality of Seasonally Flooded Agricultural Fields in Mississippi, USA," Agriculture, Ecosystems and Environment 81: 171-178.
Messina, M. and W. Conner (1998). Southern Forested Wetlands: Ecology and Management. Lewis Publishers, Boca Raton, FL-USA.
Mitsch, W. and J. Gosselink (2000). Wetlands. John Wiley and Sons, Inc., New York, NY-USA.
Ritchie, J.C., F.R. Schiebe, and C.M. Cooper (1983). "Spectral Measurements of Surface Suspended Matter in an Oxbow Lake in the Lower Mississippi Valley," Journal of Freshwater Ecology 2: 175-181.
Willis, T (2004). "Mississippi Partners Winter Water Management Project," Mississippi 319(h)/ Unified WatershedAssessment Project Final Report. Contract number MDEQ00-01-FP-0001DU, Mississippi Dept. ofEnvironmental Quality, Jackson, MS-USA.